
Measuring Quality of Grammars for 

Procedural Level Generation
Procedural Content Generation Workshop

August 7th 2018, Malmö, Sweden

Riemer van Rozen1,2,3 Quinten Heijn3

1. Amsterdam University of Applied Sciences – Play & Civic Media
2. Centrum Wiskunde & Informatica – Software Analysis & Transformation

3. University of Amsterdam – Master of Software Engineering



Live Game Design

• Premise: Live Game Design project

– case study with Ludomotion

– quality assurance of procedurally 

generated game levels 

– Ludoscope

• Problem. grammar-based 

procedural level generation raises 

productivity of level designers at 

the cost of quality assurance

Unexplored: a roguelike dungeon 

crawl game that embeds a grammar-

based dungeon generator



Problem Statement

• Problem. authoring, improving, 

maintaining grammars is difficult

– lack of direct manipula:on

– hard to predict how each grammar 

rule impacts the overall level quality

• Challenge. lack of tools and 

techniques for debugging and tes:ng

• Ques2on: How can the quality of 

grammars that work on :le maps for 

procedural level genera:on be 

improved?

• Objec2ves. BeAer tools & techniques

grammar

rules

level

designer levels

problematic level



Software Evolution

• So#ware Evolu-on

– so1ware conforms less and less 

to the changing expecta9ons of 

its users

– it becomes harder to adjust the 

so1ware and maintain its quality

– games = changing requirements

• Two branches of research

1. What evolves. improve 

knowledge, plan and predict, 

e.g., by analyzing source code 

over 9me

2. How to evolve. improve 

techniques for adjus9ng 

so1ware to new requirements, 

e.g., with model transforma9ons

Software Evolution. Editors: Tom Mens

and Serge Demeyer. Springer, 2008

Evolving Software Systems. Editors: Tom 

Mens, Alexander Serebrenik, Anthony 

Cleve. Springer 2014



Approach and Contribu0ons

• Level Designer questions

1. Efficiency. No dead content?

2. Effectiveness. Are the intended 

parts in the level?

3. Root-cause analysis. Given a 

level with a problem, by which 

rules were the affected tiles 

generated? 

4. Bug-fixing. Does changing a rule 

improve levels, or does it also 

introduce new problems? 

5. Bug-free. How to test?

• Approach: use SE techniques to 

answer level designer questions

1. Metric of Added Detail (MAD)

– Lines of Code (LOC): used to 

measure volume (or size)

– Cyclomatic Complexity (CC): 

calculates branch points in 

control flow

– addresses question 1

2. Specification Analysis Reporting 

(SAnR)

– grammar rules perform model 

transformations

– apply origin tracking, record 

transformations, analyze history

– specify level properties

– addresses questions 2, 3, 4, 5



Dungeon Room Generator

• Dungeon room generator

– toy example

– simple, representative

• Goals

– Traverse the room

– Evade fire pillar traps

– Extinguish the flames

• Level

shown



Dungeon room pipeline – stage 1

• First, we add walls

• Rule r1 replaces empty cells 

on the room borders by walls

– (R) includes rule rota=ons

– (U) repeats un=l the rule can

no longer be applied

• Running the module results

in an empty room with walls



Dungeon room pipeline – stage 2

• Next, we add doors

• North door. Rule r2 replaces 

a north wall (neighboring an 

empty cell) by a door

• East door. Rule r3 replaces 

an east wall (neighboring an 

empty cell) by a door

• Running module m2 results 

in two doors in the walls



Dungeon room pipeline – stage 3

• Finally, we add a challenge

• Fire pillars set players on 

fire when they remain close 

for too long

• Water from a pond enables 

players to extinguish the 

flames

• Running module m3 results 

in a room populated with 

three fire pillars and a pond



Dungeon room pipeline – complete

Successive model transformations



Dungeon room pipeline – problems

• Problem: fire pillars can 

block access to doors

• Patch 1: remove obstacles

– Rule r6 removes fire pillars 

blocking doors

• Result: fewer traps than 

intended may reduce the 

difficulty



Dungeon room pipeline – problems

• Patch 2: move obstacles

– Rule r7 move a fire pillar 

blocking a door to the le:

– Rule r8 moves a fire pillar 

blocking a door to the right

Rule r7 moved pillar M Cannot move pillar 2 Problems moving pillar 3 



MAD Level Design

• Analyzing rule effect with the 

Metric of Added Detail (MAD)

– Design a rule and calculate the 

MAD score with respect to a 

symbol hierarchy

• Calculating the metric

– Neutral effect (0): cell remains 

the same

– Add detail (+1): cell is rewritten to 

a new symbol

– Remove detail (-1): cell is 

rewritten to an old symbol



MAD Level Design

Rule r6 has a negative MAD score, since it removes detail.

Rules r7 and r8 have a neutral MAD score, since they preserve detail.

Symbol hierarchy



Level Property Language

• Problems with patching

– difficult to get right

– side-effects

– do not express level properties

• Solution: Level Property Language

domain-specific language for 

expressing level properties

– declarative instead of 

transformative

– uses names of tiles

and grammar rules

– add new properties when needed

– Iterative testing

grammar

rules v1

level

designer levels

grammar

rules v2

levels



Level Property Language

• Amounts. counts locations of 

specific tile types and verifies 

expected amount

– 1x water. size {w} == 1: true

– 3x pillar. size {a,b,c} == 3: true

• Adjacency. filters tile locations

– no pillar adjacent to doors

size {a} == 0: false

• Topographical inclusion. filters 

level generation history using rule 

names to obtain tile locations

– 2x doors in walls. collects tiles affected 

by the walls rule. size {x, y} == 2: true

1x water

3x pillar

no pillar adjacent to door 

no water adjacent to pillar 

2x door in walls

a

b

c

w

x

y



SAnR Level Design

• Mixed-initiative level design 

using Specification Analysis 

Reporting (SAnR)

1. Design grammar rules and 

level properties

2. Generate levels

3. Select a level to debug

4. Analyze how properties 

evolved in its level 

generation history

Level 

Design

Select

a level

Rules
Level

Properties

Levels +

Histories

Generator

Level +

Report

SAnR

Analysis

Level +

History











Conclusions

• So#ware Evolu-on perspec-ve

– opportuni,es for tool improvements

– Two novel techniques for

grammar-based level genera,on, 

specifically for ,le maps

1. Metric of Added Detail (MAD)

– raises flags for rules that remove

details (which may be problema,c)

2. Specifica-on Analysis Repor-ng (SAnR)

– adds declara,ve level proper,es

– provides insight into level genera,on 

history

• Evalua-on and valida-on

– Case study on Boulder Dash

grammar

rules +

level

properties
level

designer levels


