Centrum Wiskunde & Informatica % Hogescho()] van Amsterdam

Amsterdam University of Applied Sciences

Model Evolution
Towards Live Domain-Specific Languages

IPA Fall Days — Garderen, Friday November 242018
Riemer van Rozen'?3 @rvrozen
joint work with Tijs van der Storm?* @tvdstorm

1 Amsterdam University of Applied Sciences (HVA)
2 Centrum Wiskunde & Informatica (CWI)
3 University of Amsterdam — Master SE (UvA)
4 University of Groningen (RUG)

Textual Models

e Models encoded as text source kill A
income: kill -10-> gold i
— Textual DSLs

kill
pool gold is "$" at 20 income:
— Programming Languages cost: gold -10-> buyHp 10

« DSL for the Game Domain: user c.:onver'ter' buyHp
benefit: buyHp -20-> hp gold

Micro-Machinations is a language 1 ho is "+" gt 100 cost:
and library that enables game pool np 1s "+ 4 _ 10
damage: hp -10-> hit

designers to modify a : _
game’s rules at run-time. drain hit buyHp

 Example: Johnny Jetstream

Step 1: Play Test vl Step2: Re-design

SOL Joun Mmqits_ Sessn Pued Sace s Wodew el
2/ e VL VM Dok v, Wastrmatomny serdl ren ity ety

3 e et e 2 [i

1A en)5 a

AR #6131 80)03]

CERT® W

Textual Models

Evolution perspective source kill /\
. income: kill -10-> gold kill
— Char'wges between different pool gold is "$" at 20 income:
versions of a program cost: gold -10-> buyHp 10
— Live DSLs modify running user converter buyHp @
programs benefit: buyHp -20-> hp gold
_ pool hp is "+" at 100 C?St'
How to (1) determine the damage: hp -10-> hit
difference between two textual

drain hit buyHp

models and (2) evolve running ,
benefit:

programs? * 20

Step 1: Play Test vl Step2: Re-design Step 3: Play Test v2 @

R R h
Fse" “5" damage:
- e 10
fohterDrones:0 |

|

x goid: 750 %
= Mi
@

SOL Joun Mmqits_ Sessn Pued Sace s Wodew el
B0 Ranead i sman g MR N, Dt Wi, Mt homat s/ e yos. sl

@ drones: 0
; 5 1 b o e i -~ -] —
.4 seekerDrones: 0
‘? fighterDrones: 1
R n pattingDmngg 1
= mineeDrones: 0
old: 0

=
|2}
&
&
&
2
]
~
-
-

CERT® W

Live Modeling aims to bridge the “gulf
of evaluation” (D. Norman 1988)

EXECUTION
BRIDGE

ACTION

PHYSICAL
SYSTEM

Goal: Support gradually Improving
insight “voortschrijdend inzicht”
and mental models of how source
code changes affect systems

SPECIFICATION
&
25
R
& X

Problem: cognitive gap between
user action and feedback on that
action + long edit-compile cycles

INTERPRETATION

GOALS

<
é %
T A <
& X A
EVALUATION
BRIDGE

Live Programming

Live programming aims to bridge the
gulf of evaluation by shortening the
feed-back loop between editing a
program’s textual source code and
observing its behavior.

In a live programming environment,
the running program is updated
instantly after every change in the
code.
— see the behavioral effects of actions
immediately

— learn predicting how the program
adapts to targeted improvements to the
code

Question: how to bridge the gap
between running programs and
textual DSLs?

Femiva

]

-]
(@
2
@
=¥
A
=
™
[
[
e
=
-

Modify

~—

Feedback *\
Analyze

Running

Software

Eclipse File Edit Source Navigate Search Project Rascal Run Window Help

ano

Rascal - textual-model-diff-live/input/doors1.sl| - Eclipse Platform

urce P¥Rascal

® IDErsc @ doorsl.sl &2
machine doors
state closed

open => op¢

state opened
close =>

end

Rascal console [DEBUG: enabled, project
rascal>sl_register();

ok

rascal>

Writable

TSR
open close
L3
| State | # | Events
e e frmmm e —————
bl closed | 1 | [open]
| opened | @ | [close]
& Console 2 = o

B v Store history Terminate Interrupt Trace

textual-model-diff-live]

Smart Insert 6:5

Suggestion: Not State Machines

Games Research

— Applications to games other than
Super Mario Bros are especially
welcome” — Call for papers of the
Procedural Content Generation in
Games Workshop.

m.nmmi,m‘m.
BRI R
LOUHDOLUT

Language Research

— Applications to languages other
than State Machines are especially
welcome” — future call for papers

Pros: state machines are simple,

explainable, research can be
— Behavior Trees compared
http://aigamedev.com/open/article/b

ehavior-trees-partl/

Suggested Alternatives

Cons: state machines may not be
representative, tedious repetition

— PuzzleScript
https://www.puzzlescript.net

— Machinations

http://aigamedev.com/open/article/behavior-trees-part1/
https://www.puzzlescript.net/

Challenge: How to build DSLs

for live programming? foo.lang

Objective: provide generic y l)
language technology for diff
constructing DSLs for live l

programming foo’.lang

Question: How can a textual
difference between successive
source code versions and
origin tracking be leveraged for
obtaining a run-time difference
in behavior?

Problem Statement and Objectives

execute

>~ Behavior(foo)

execute l

> Behavior(foo’)

Approach

Approach: Apply Textual Model

parse/resolve execute

Differencing (TMDiff) to obtain foo.lang —— MM —— MM+

model-based deltas and Run-
time Model Patching (RMPatch)
to migrate models at run time.

* Program migrations as part of
the language semantics

e One correct result of a state
migration is assumed

foo’.lang

l TMDiff l :'_R_l_/l_P_a_t_c_h_il

o o -

“diff” —— A(MM) —— [J]

1 1

Programming Environment

@ Textual @
| Model

Running Program

_— Delta

(rents) o Gonares

+ State

MM+

Background:

Difference and Union of Models
UML, 2003

Marcus Alanen and Ivan Porres

Model Differencing

e Difference and Union of Models LN Goce

— Context: version control A &

— Motivation: Two designers / 1 \

B
make separate changes to a = 5 : < 2
model. How to merge the two ~ ———o9ner esigner
models? A C

A C
i T
\ Final Model /

A C
Source: Marcus Alanen and lvan Zf\
Porres. Difference and union of D

models. UML 2003.

Source: Ilvan Porres, Difference and .) i
] Fig. 1. Example of the Union of T'wo Versions of a Model
Union of Models, 10 years later

(invited presentation). MODELS 2013

Model Differencing

e Difference and Union of Models

Difference. calculate the
difference between two
models. M2-M1=A

Union. merging two models by
applying the difference.
M1+ A =Mz

> O

d

w >

I

= A

B

Figure 3: Example of the Union Based on Differences

Source: Marcus Alanen and lvan Porres. Difference and
union of models. UML 2003.
Source: Ilvan Porres, Difference and Union of Models, 10
years later (invited presentation). MODELS 2013

Edit Script Operations

e Edit script operations

— Differences or deltas are
expressed as a sequence of
operations, the definition of A.

e Element creation and deletion

— new(e, t) : Create a new
element of type t with UUID e.
By default, a new element has
all its features set to their
default values.

— del(e, t) : Delete an element
of type t with UUID e. An
element may only be deleted if
all its features are set to their
default values.

Operation O Dual operation O
new(e,t) del(e,t)

del(e,t) new(e,t)

set(e, f,vo,Vn) set(e, f,Vp, Vo)
insert(e, f,e;) remove(e, f.e;)
removele, f,e;) insert(e, f,e;)
insertAt(e, f,e;,i) removeAt(e, f,e;,i)

removeAt(e, f,e;,i)

insertAt(e, f,e; i)

Table 1: The Map Between Operations and Dual Operations.

Source: Marcus Alanen and Ivan Porres.
Difference and union of models. UML 2003.

Edit Script Operations

e Modification of a feature of

type f of an element with UUID e. | OPeration O Dual operation O
Where necessary, e: refers to new(e,?) del(e, 1)
another element. del(e,?) new(e,?)
— set(e, f, vo, vn): Set the value of §et(e,f, Vo:Vn) set(e, f,Vn, Vo)
e.f from vo to vn for an attribute insert(e, f, ;) remove(e, f, &)
of primitive type. remove(e, f,e;) insert(e, f,e;)
insertAt(e, f,e;,i) removeAt(e, f,e;,i)
— insert(e, f, et): Add a link from e.f removeAt(e, f,e;,i) | insertAt(e, f, e, i)

to et, for an unordered feature.
Table 1: The Map Between Operations and Dual Operations.

— insertAt(e, f, e, i): Add a link
from e.f to e, at index /i, for an
ordered feature.

— removeAt(e, f, et, i): Remove a

link from e.f to et, which is at Source: Marcus Alanen and Ivan Porres.
index i, for an ordered feature. Difference and union of models. UML 2003.

Edit Script Example

A =[] new(Class,u;),
new (Generalization, u3)],

insert (u3,namespace, ug), AClass

,parent, u;),

AClass insert(u3, child, u;),

insert(u; , specialization, u3),

Sub

insert(ug, ownedElement, u3),
insert(u,, namespace, ug) ,
insert(u,, generalization, u3),
set(up,name, “”,“Sub”)],

[]
]

Figure 4: Difference Between Two Simple Models.

(13

(13

(
insert(ug,ownedElement, u;),

(4o

(12

(

Source: Marcus Alanen and Ivan Porres.
Difference and union of models. UML 2003.

Implications, Benefits and Limitations

Differences can be

— Used for understanding the

Programmed manually

Leveraged for algorithms
and modeling tools

Generated from DSLs
Recorded, played back

Applied on systems and
rolled back

Analyzed formally for
predicting results

evolution of models

e Main limitations of A&P
approach.

— Requires unique, stable,
universal model element
identifiers across model
revisions.

— Metamodel is assumed to be
static.

* In addition: Encode history,
NOT scripts! (operations go stale)

Source: lvan Porres, Difference and Union of

Models, 10 years later (invited presentation).
MODELS 2013

Centrum Wiskunde & Informatica % Hogeschool van Amsterdam

Amsterdam University of Applied Sciences

Origin Tracking + Text Differencing =
Textual Model Differencing

Theory and Practice of Model Transformations, 2015

Riemer van Rozen'?3 and Tijs van der Storm?*
@rvrozen @tvdstorm
1 Amsterdam University of Applied Sciences (HVA)
2 Centrum Wiskunde & Informatica (CWI)
3 University of Amsterdam — Master SE (UVA)
4Rijksuniversiteit Groningen (RUG)

Problem: Differencing with identity

Doors Model (v1):

|_d-1: Machine
L\

V N\

Doors Model (v2):

d1: Machine

d2: State

d3: State

d2: State

[X

d4: State

: Trans : Trans : Trans : Trans
event: event: event: event:
“close” “open” “lock” “unlock

: Trans : Trans

event: event:

llclose" llopen"
Problem

— We cannot simply apply model

differencing to models encoded as text.

Problem: Textual Model Differencing

 What are the entities? Doors.sml (v1):

— First parse to 1 machine doors|d1 d1: Machine
obtain a tree 2 stateclosed |d2 \

— Referential structure 3 open => opened |ul d3: State d2: State
is determined by 4 T X T
scoping rules 5 state opened |d3

e Definitions: 6 close =>closed [u2 : Trans : Trans
machine, state 7 end event: event:
! “close” “open”

e Uses: transition

* Problem

— Textual model elements have no
stable identity across source versions.

Doors.sml (v1):

d1: Machine

1 machine doors||d1 \
2 state closed d2
_ d3: State d2: State
3 open=>operjed [{u1
: X1
5 state opened ||d3 - Trans - Trans
6 close => closqd u2
event: event:
7 end “close” “open”
Doors.sml (v2):
1 machine doors||d4 d4: Machine
2 stateclosed |[[ds5
3 open=>openpd |([y3
d6: State
4 lock => locked] ud
5
d6 i
6 state opened : Trans : Trans : Trans : Trans
7 close => closdd us
event: event: event: event:
8 “close” “open” “lock” “unlock”
9 state locked d7
10 unlock => cldsed |[ag] Textual model elements have no stable
11 end

identity across source versions

Objectives: Computing Deltas

Question

— How to apply model
differencing to models
encoded as text?

What are the differences?

— Imperative edit scripts encode
deltas

— Multiple deltas can express the
difference between two models

- ambiguity
— Deltas can capture
user intent

machine doors |d1

state closed (g2

open =>opened [y1

state opened |d3

close =>closed [u2

end

machine doors
state closed

d4

d5

open => opened

lock => locked

state opened

u3

ug

d6

close => closed

state locked

ub

d7

unlock => closed

end

//create a State def with label d7

create State d7

//initialize the new State

"locked"

d7 = State("locked", [Trans("unlock",d2)])

//store 2nd Trans in state

"closed"

d2.out[1l] = Trans("lock", d7)

//store new State
dl.states[2] = 47

ué

Contributions

e Question

— How can textual differencing be used to match
model elements based on origin tracking?

e Contributions

— TMDiff
— Apply TMDiff to DSL programs

Objectives: Computing Deltas

* Origin origin,
— src, has an origin relation with m,
v :
* Align Sy map > My
. I :
— Use the text (':|Iff A between sr-cl. align E A identify
and src, to align tokens of entities. !
v v
* Objective: Identify ST map > m,
— Given textual models src; and
src, determine which entities orlg/n
2

in my are still in m,

Approach: TMDiff

str src,

obj m;

str src,

obj m,

>| TMDiff

N

J

 TMDiff steps

— Matching: generate a tuple of
added, removed and identified entities

— Added: generate Create and SetTree operations

— |ldentified: difference nodes definitions
— Removed: generate Delete operations

N
4

list[Operation]

Matching Entities: Text diff

machine doors
state closed
open => opened

--- a/doors1.sl
+++ b/doors2.sl

@@ -3,0 +4

machine doors 1
state closed 2
open =>opened 3
< 4
state opened 5
close => closed 6
en 7
8

10

11

lock => locked

<€

+ lock => locked

state opened
close => closed

@@ -6,0 +8,3

state locked
unlock => closed

+

+ state locked
+ unlock => closed

/

end

N o o B WN R

Matching Entities: Project, Identify

machine doors |d1

state closed |[d2

open => opened

state opened |d3

close => closed
end

machine doors
state closed

d4

d5

open => opened

lock => locked

state opened

d6

close => closed

O 0 N OO 1 B W N B

state locked

[N
o

d7

unlock => closed

end

[
[N

* Calculate Matching
— added, removed, identified entities

(1d7},1},1(d1,d4),(d2,d5),(d3,d6)})

- M,

Pl =

[(doors,
(closed,
(opened,

P2 =

[(doors,
(closed,
(opened,
(locked,

Machine, 1, dl)
State, 2, dz),
State, 5, d3)]

Machine, 1, d4) €<
State, 2, d5), <
State, 6, d6) <€—
State, 9, d7)] add

Differencing

We now have

— Textual sources
— Models

— Origin relations
— Matching

We now can

— Apply well-known model
differencing algorithmes.

align

origin;

-y
map 6
: identify

\ %

> m,
map ;

origin,

Implementation & Evaluation

Rascal

— Meta-programming language
and language work bench
http://www.rascal-mpl.org

— TMDiff
https://github.com/cwi-
swat/textual-model-diff

Evaluated on Derric
— A DSL for digital forensics

— Describes file formats for
analyzing large amounts of
unstructured data.

— File format evolution is

available on GitHub.
https://github.com/jvdb/derric

format gif
extension gif

strings ascii
sign false
unit byte
size 1

type integer
endian big

Sequence
(Header87a Header89a)
LogicalScreenDesc
(
[GraphicControlExtension? TableBasedimage
CompressedDataBlock*]
[GraphicControlExtension?
PlainTextExtension DataBlock*]
[ApplicationExtension DataBlock*]
[CommentExtension DataBlock*]

\

http://www.rascal-mpl.org
https://github.com/cwi-swat/textual-model-diff
https://github.com/jvdb/derric

Centrum Wiskunde & Informatica ”z Hogeschool van Amsterdam

Amsterdam University of Applied Sciences

Towards Live Domain-Specific Languages
From Text Differencing to Adapting Models at Runtime

Journal of Software & Systems Modeling, 2017

Riemer van Rozen'?3 and Tijs van der Storm?*
@rvrozen @tvdstorm
L Amsterdam University of Applied Sciences (HvA)
2Centrum Wiskunde & Informatica (CWI)
3 University of Amsterdam — Master SE (UvA)
4 University of Groningen (RUG)

Case Study: Live SML

static meta-model, o
which is not true in .
general — event: String

1
* LiveSML Metamodels !
) Mach Q . Mach’
a) Static metamodel |
) [
b) Dynamic metamodel ~ name: String ! state
extension: Y states :
*
 Machine :
Element !
current state |
*
* State count — name: String :
states 4 :
I [1 ! Y
N 1
Note: Thedrtlm;tlme Group . State ¢ State’
meta-model o -
. o)) tl’anSitionS ! — . H
LiveSML “extends” its Ttarget L[T countint
:
1
1
1
1
1
1
1

(a) Meta model (b) Runtime extension

Live SML: Components

Live SML components

a) programming
environment

b) program
execution as an
interactive GUI

Live SML Models

c) static SML model
representing the
textual source
code

d) dynamic SML
model that is

executing at run
time

Source code perspective

@® Rascal - textual-model-diff/input/d...

& Models

Run - time perspective

(@] @ State Machine: doors

open close

| State | # | Events
——frmmmmc——— e e et

* | closed | 1 | [open]
| opened | @ | [close]

(b) Running Doors)

state

BN

d2: State d3: State

count: 1 count: O

t X ¢

:Trans :Trans

= [doorsl.smi 53 2¥ IDE.rsc S =
1 machine doors
— state closed
open => opened
state opened
close => (10%04
end
:"u':'f.tohg e ::.:T't;
(a) Editing Doors)
d1l: Mach
d2: State d3: State
:Trans :Trans
event: "open" event: "close"

event: "open" event: "close"

(¢) Static model of Doors

(d) Runtime model of Doors,

Live SML: State Migration

class MigrateSML extends ApplyDelta {

* Creation of a new machine _ !
private Mach machine; //run-time model to migrate

|

2

— Initially there is no 3
machine because we start 4 @Override

S

6

T

with an empty object public void visit(Create create) {
super.visit(create);

space.
— We store a reference to 8 Object x = create.getCreated(this);
the machine when it is first 9 if (x instanceof Mach) { //new machine
created (lines 9 and 10). 10 this.machine = (Mach) x;
11 }
12 else if (x instanceof State) { //new state
* Creation of a new state 13 Edit e = new SetPrim(reverseLookup(x),
, : 14 new Path(new Field("count")), 0);
- The cgunt attrlb.ute is 15 e.accept(this):
initialized to O (lines 12— |4 3
15). 17 }

18

Live SML — State Migration

Insertion of an element in an 19 ©@Override
uninitialized machine 20 public void visit(Insert insert) {

21 super.visit(insert);
— When a state or group is 22
inserted into a machine that 23 Object owner = insert.getOwner(this);
. 7 | | I: | —
has no current state (lines 24 if (machine !'= null && mac_:hlne.state null
e e 1 25 && owner == machine) {
24_29)' it is initialized to the 26 // Added a group or state to a machine
initial state (lines 43—-54). 2] // without a current state.
— The initial state is the first 92) gaTonitialotatel)
state in the textual model. 30}
31

) 32 ©@Override
Deletion of the current state 33 public void visit(Delete delete) {

— When a machine’s current ;;1 super.visit(delete);
state is deleted (lines 36— 36 Object x = delete.getDeleted(this);
37), it is reinitialized to the 37 if (machine != null && x == machine.state) {
|n|t|a| state (||nes 43_54) 38 // Deleted the current state.
39 goTolnitialState();
40 3

41 }

Live SML — State Migration

Insertion of an element in an
uninitialized machine.

— When a state or group is
inserted into a machine that
has no current state (lines
24-29), it is initialized to the
initial state (lines 43—-54).

— The initial state is the first
state in the textual model.

Deletion of the current state

— When a machine’s current
state is deleted (lines 36—
37), it is reinitialized to the
initial state (lines 43-54).

43
44
45
46
47
48
49
50
51
52
53
54
55

private void goTolnitialState(){
State s = machine.findlInitial();
Edit el = new Set(reverseLookup(machine),
new Path(new Field("state")), s);
el.accept(this); //Set the current state.

if (s '= null){
Edit e2 = new Set(reverseLookup(s),
new Path(new Field("count")), s.count+1);
e2.accept(this); //Increment current state count.

¥
}

Live State Machine Language in Rascal

Eclipse File Edit Source Navigate Search Project Rascal Run Window Help

[eoco Rascal - textual-model-diff-live/input/doors1.sl - Eclipse Platform %)
:=J' %zi;’v (,;J %' 6 L: r" s % iﬁ‘ J_‘ v 1} v *;‘_l x:';:lv v { Qi_?l,.l\;- ACCes
J 3|)h‘jResource P¥ Rascal ,
1 State machine
@ IDE.rsc @ doorsl.sl 23
. | open | [close |
1 machine doors R
7 state closed | State | # | Events
3 open => opened . . . e B
4 RSl T K * | closed | 1 | [open]
state opened I opened | @ | [close]
5 close => closed
6 |
/7 end
¥ Output Progress Problems % Tutor [El Console 23 Variables = B
=¢ Elv [~ Store history Terminate Interrupt Trace
Rascal console [DEBUG: enabled, project: textual-model-diff-live]
rascal>sl_register();

Live SML: Modeling Scenario

» Doors»

3 Doors

|
I
I

Y

<---4 s

S0 p——>» S| p—>

click

open

2 —>

click

close

53

» Doorss

click
lock

A

—> Doors

Y

—> 56 ———> 57

Interleaved coevolution of models Doorsn and

application run-time states Sn over time

* Next: TMDiff deltas + migration deltas

Y

Live SML: Modeling Scenario

Model State Event Edit operation Origin

1) sO Save Doors1 61 create State d2 TMDiff @ Doors1
62 d2.count=0 side effect
63 create State d3
64 d3.count=0 side effect

05 create Mach d1

66 d2 =State(name("closed"),
[Trans("open",d3)])

67 d3 = State(name("opened"),
[Trans("close",d2)])

68 d1=Mach(name("doors"),

[d2,d3])
09 dl.state=d2 side effect
610 d2.count=1 side effect

At the end of this sequence we are in Model Doors1 and State s1.

Model

State

Event

Edit operation Origin

Doors1

sl

Click open

611
612

dl.state = d3 user action
d3.count=1

Doors1

s2

Click close

613
614

dl.state = d2 user action
d2.count =2

Doors1

s3

Save Doors?2

615
616
617

618

619
620
621
622

create State d7 TMDiff Doors1 Doors?2
d7.count=0 side effect

d7 = State(name("locked"),
[Trans("unlock",d2)])

insert d2.transitions[1] =
Trans("lock",d7)

insert d1.states[2] = d7
rekey d1 - d4
rekey d2 - d5
rekey d3 - d6

Doors2

s4

Click lock

623
624

d4.state = d7 user action
d7.count=1

Model State Event

Edit operation Origin

Doors2 s5

Save Doors3

625
626
627
628
629
630
631
632

create Group d11 TMDiff Doors2 Doors3
d11 = Group("locking",[d6])

remove d4.states[2]

insert d4.states[2] = dO

rekey d4 - d8

rekey d5 - d9

rekey d6 - d10

rekey d7 - d12

Doors3 sb6

Save Doorsi1

633
634
635
636
637
538
639
640
641

remove d8.states[2] TMDiff Doors3 Doors1
remove d9.transitions[1]

delete d11

delete d12

d13.state =d9 Side effect

d9.count =3 Side effect

rekey d8 - d13

rekey d9 - d14

rekey d10 - d15

Discussion, Benefits and Limitations

Feature / benefit

Trade-off / limitation

Mitigating argument

Edit operations: record
history as edit scripts
for do, undo, replay

Large memory foot print,
a potential memory leak

Recording differences can
be turned off or limited

TMDiff is language-
parametric (needs
name resolution) and
calculates model-based
deltas “for free”

The results of the
differencing algorithm
bleed into the language
semantics (which
entities live and die)

Facilitates rapid Live
prototyping of DSLs for live
and textual modeling. The
default is usually OK due to
small incremental changes

RMPatch helps
construct DSL
interpreters for

live programming

High implementation

effort. The granularity of
edit scripts operations is
too fine (does not scale).

Some languages require
exact state migrations and
precise steering

Conclusions and Future Work

. Questions Source code perspective Run-time perspective
@ Rascal - textual-model-diff/input/d.. © @® State Machine: doors
1. How can textual differencing be O doorst.em 2 | @IDERe = O open | [close
used to match model elements | He=t=*
. . . en => opened | State | # | Events
based on origin tracking? state opened 1 e e Teeeaee
close => clost close open
2. How can “Live DSL” construction end RO
be supported with generic ot e el 1 E
?
reusable frameworks: References
* Contributions « Riemer van Rozen and Tijs van der Storm.
— TMDiff and RMPatch "Origin Tracking + Text Differencing =
_ Textual Model Differencing." International
— Apply TMDiff to DSL programs Conference on Theory and Practice of Model
— LiveSML illustrative example Transformations. Springer, 2015.
* Current work e Riemer van Rozen and Tijs van der Storm.

"Toward Live Domain-Specific Languages:
From Text Differencing to Adapting Models
at Runtime" Software & Systems

— Live Machinations Modeling(2017): 1-18.

— Modeling extensible state
migrations that scale to larger DSLs

Centrum Wiskunde & Informatica ”‘5 Hogeschool van Amsterdam

Amsterdam University of Applied Sciences

Modeling with Side-Effects

current work
in the context of the Live Game Design RAAK-MKB project

Riemer van Rozen'%3
@rvrozen
L Amsterdam University of Applied Sciences (HvA)
2 Centrum Wiskunde & Informatica (CWI)
3 University of Amsterdam — Master SE (UVA)

Machinations Evolution & Approach

2009 2013 2014 2015 2018
Conceptual . Live A Pattern Based Live
, Formal Analysis . . .
Game Design P> + text. modules —> Adaptations [Game Design > Adaptations
Aid ’ v1.0 C++ Assistant v2.0 C# Unity
+1 7
v e auto source s
/N 588 = pool p at 7 gemeptsy
flow: s -p-> p =

Game Mechanics

RAdvanced Game Design

r—

Design Decision
Alternatives”

S C ; .
= \ , Mechanics Mechanics
e, ¢ Mechanics :
l --=> Pattern Design
Ernest Adams Patterns L Assistant
Joris Dormans dnguage

intent: Acquisition: Converter buyShield L
costs 10 + shield resources from gold as spe =%
~ and yields 10 resources in shield as specife Previous
S use when: Apply Acquisition for introducing a Apply

Baneft

soooon

Machinations Evolution & Approach

2009 2013 2014

Conceptual
Game Design P>
Aid

Formal Analysis
+ text, modules

Live

v1.0 C++

2015

A Pattern Based
—> Adaptations [Game Design
Assistant

2018

—>

Live
Adaptations
v2.0 C# Unity

 Joris Dormans. Machinations:
Elemental Feedback Patterns for
Game Design. In GAMEON-NA, 2009.

e Ernest Adams and Joris Dormans.
Game Mechanics: Advanced Game
Design. New Riders Publishing, 2012.

* Paul Klint and Riemer van Rozen.
Micro-Machinations: A DSL for Game
Economies. In Software Language
Engineering, 2013

Riemer van Rozen and Joris Dormans.
Adapting Game Mechanics with
Micro-Machinations. In Foundations
of Digital Games, 2014.

Riemer van Rozen. A Pattern-Based
Game Mechanics Design Assistant. In
Foundations of Digital Games, 2015.

Riemer van Rozen and Tijs van der
Storm. Toward Live Domain-Specific
Languages. Software & Systems

Modeling, 2017.

Live Machinations: Model + State

Live Machinations: Model + State

'@ @ rozen — Xamarin Studio External Console — mono32 --debug --debugger-agent=1

Micro-Machinations Design Space Navigator v@.01

et — Rt

pool fork at 1 pool fork = 1

Philosopher pool spoon = 1

{ pool Jan = 1
ref spoon [0]: Philosopher
user pool righthand at @ pool righthand = @
s0: spoon-->spoon source eatSource
ref fork drain eatDrain
push source eatSource converter eat
all drain eatDrain pool lefthand = @
eatDrain.*.>eatDrain pool Hans = 1
user all converter eat [@]: Philosopher
s1: righthand-->righthand pool righthand = @
s2: eat-—>eat source eatSource
user pool lefthand at @ drain eatDrain
fl1: lefthand-—>lefthand converter eat
f2: eat-——>eat pool lefthand =
fo: fork-->fork

}

pool spoon at 1

pool Jan of Philosopher at 1

fork.=.>fork

spoon.=.>spoon

pool Hans of Philosopher at 1

Spoon.=.>spoon

fork.=.>fork

