
Model Evolution
Towards Live Domain-Specific Languages

IPA Fall Days – Garderen, Friday November 2nd 2018

Riemer van Rozen1,2,3

joint work with Tijs van der Storm2,4

1 Amsterdam University of Applied Sciences (HvA)

2 Centrum Wiskunde & Informatica (CWI)

3 University of Amsterdam – Master SE (UvA)

4 University of Groningen (RUG)

@rvrozen

@tvdstorm

Textual Models

• Models encoded as text

– Textual DSLs

– Programming Languages

• DSL for the Game Domain:

Micro-Machinations is a language

and library that enables game

designers to modify a

game’s rules at run-time.

• Example: Johnny Jetstream

source kill

income: kill -10-> gold

pool gold is "$" at 20

cost: gold -10-> buyHp

user converter buyHp

benefit: buyHp -20-> hp

pool hp is "+" at 100

damage: hp -10-> hit

drain hit

Step 1: Play Test v1 Step2: Re-design Step 3: Play Test v2

20

$

hp

100

+

kill

hit

buyHp

benefit:

20

cost:

10

income:

10

damage:

10

gold

Textual Models

• Evolution perspective

– Changes between different

versions of a program

– Live DSLs modify running

programs

• How to (1) determine the

difference between two textual

models and (2) evolve running

programs?

source kill

income: kill -10-> gold

pool gold is "$" at 20

cost: gold -10-> buyHp

user converter buyHp

benefit: buyHp -20-> hp

pool hp is "+" at 100

damage: hp -10-> hit

drain hit

20

$

hp

100

+

kill

hit

buyHp

benefit:

20

cost:

10

income:

10

damage:

10

gold

Step 1: Play Test v1 Step2: Re-design Step 3: Play Test v2

Live Modeling aims to bridge the “gulf

of evaluation” (D. Norman 1988)

Goal: Support gradually Improving

insight “voortschrijdend inzicht”

and mental models of how source

code changes affect systems

Problem: cognitive gap between

user action and feedback on that

action + long edit-compile cycles

Live Programming

• Live programming aims to bridge the
gulf of evaluation by shortening the
feed-back loop between editing a
program’s textual source code and
observing its behavior.

• In a live programming environment,
the running program is updated
instantly after every change in the
code.
– see the behavioral effects of actions

immediately

– learn predicting how the program
adapts to targeted improvements to the
code

• Question: how to bridge the gap
between running programs and
textual DSLs?

Feedback

Running

Software

Modify Analyze

Suggestion: Not State Machines

• Games Research

– ``Applications to games other than

Super Mario Bros are especially

welcome” – Call for papers of the

Procedural Content Generation in

Games Workshop.

• Language Research

– ``Applications to languages other

than State Machines are especially

welcome” – future call for papers

• Suggested Alternatives

– Behavior Trees

http://aigamedev.com/open/article/b

ehavior-trees-part1/

– PuzzleScript

https://www.puzzlescript.net

– Machinations

Pros: state machines are simple,

explainable, research can be

compared

Cons: state machines may not be

representative, tedious repetition

http://aigamedev.com/open/article/behavior-trees-part1/
https://www.puzzlescript.net/

Problem Statement and Objectives

• Challenge: How to build DSLs

for live programming?

• Objective: provide generic

language technology for

constructing DSLs for live

programming

• Question: How can a textual

difference between successive

source code versions and

origin tracking be leveraged for

obtaining a run-time difference

in behavior?

foo.lang

“diff”

foo’.lang

Behavior(foo)

Behavior(foo’)

?
?

execute

execute

Approach

• Approach: Apply Textual Model

Differencing (TMDiff) to obtain

model-based deltas and Run-

time Model Patching (RMPatch)

to migrate models at run time.

• Program migrations as part of

the language semantics

• One correct result of a state

migration is assumed

foo.lang

“diff”

foo’.lang

MM

Δ(MM)

parse/resolve

MM+
execute

⟦"⟧

MM+

TMDiff RMPatch

Background:

Difference and Union of Models

UML, 2003

Marcus Alanen and Ivan Porres

Source: Marcus Alanen and Ivan

Porres. Difference and union of

models. UML 2003.

Source: Ivan Porres, Difference and

Union of Models, 10 years later

(invited presentation). MODELS 2013

Model Differencing

• Difference and Union of Models

– Context: version control

– Motivation: Two designers

make separate changes to a

model. How to merge the two

models?

Model Differencing

• Difference and Union of Models

– Difference. calculate the

difference between two

models. M2 - M1 = Δ

– Union. merging two models by

applying the difference.

M1 + Δ = M2

Source: Marcus Alanen and Ivan Porres. Difference and

union of models. UML 2003.

Source: Ivan Porres, Difference and Union of Models, 10

years later (invited presentation). MODELS 2013

Edit Script Operations

• Edit script operations

– Differences or deltas are

expressed as a sequence of

operations, the definition of Δ.

• Element creation and deletion

– new(e, t) : Create a new

element of type t with UUID e.

By default, a new element has

all its features set to their

default values.

– del(e, t) : Delete an element

of type t with UUID e. An

element may only be deleted if

all its features are set to their

default values.

Source: Marcus Alanen and Ivan Porres.

Difference and union of models. UML 2003.

Edit Script Operations

• Modification of a feature of

type f of an element with UUID e.

Where necessary, et refers to

another element.

– set(e, f, vo, vn): Set the value of

e.f from vo to vn for an attribute

of primitive type.

– insert(e, f, et): Add a link from e.f

to et, for an unordered feature.

– insertAt(e, f, et, i): Add a link

from e.f to et, at index i, for an

ordered feature.

– removeAt(e, f, et, i): Remove a

link from e.f to et, which is at

index i, for an ordered feature.
Source: Marcus Alanen and Ivan Porres.

Difference and union of models. UML 2003.

Edit Script Example

Source: Marcus Alanen and Ivan Porres.

Difference and union of models. UML 2003.

Implications, Benefits and Limitations

• Differences can be

– Programmed manually

– Leveraged for algorithms
and modeling tools

– Generated from DSLs

– Recorded, played back

– Applied on systems and
rolled back

– Analyzed formally for
predicting results

– Used for understanding the
evolution of models

• Main limitations of A&P

approach.

– Requires unique, stable,

universal model element

identifiers across model

revisions.

– Metamodel is assumed to be

static.

• In addition: Encode history,
NOT scripts! (operations go stale)

Source: Ivan Porres, Difference and Union of

Models, 10 years later (invited presentation).

MODELS 2013

Origin Tracking + Text Differencing =

Textual Model Differencing
Theory and Practice of Model Transformations, 2015

Riemer van Rozen1,2,3 and Tijs van der Storm2,4

1 Amsterdam University of Applied Sciences (HvA)

2 Centrum Wiskunde & Informatica (CWI)

3 University of Amsterdam – Master SE (UvA)

4 Rijksuniversiteit Groningen (RUG)

@rvrozen @tvdstorm

d1: Machine

: Trans : Trans

event:

“close”

event:

“open”

d2: State d3: State

d1: Machine

: Trans : Trans

event:

“close”

event:

“open”

d2: State d3: State d4: State

: Trans

event:

“lock”

: Trans

event:

“unlock

”

Doors Model (v1): Doors Model (v2):

Problem: Differencing with identity

• Problem

– We cannot simply apply model

differencing to models encoded as text.

Problem: Textual Model Differencing

• What are the entities?

– First parse to

obtain a tree

– Referential structure

is determined by

scoping rules

• Definitions:

machine, state

• Uses: transition

machine doors

state closed

open => opened

state opened

close => closed

end

1

2

3

4

5

6

7

Doors.sml (v1):

d1

d2

d3

u1

u2

d1: Machine

: Trans : Trans

event:

“close”

event:

“open”

d3: State d2: State

• Problem

– Textual model elements have no

stable identity across source versions.

d1: Machine

: Trans : Trans

event:

“close”

event:

“open”

d3: State d2: State

d4: Machine

: Trans : Trans

event:

“close”

event:

“open”

d6: State d5: State d7: State

: Trans

event:

“lock”

: Trans

event:

“unlock”

machine doors

state closed

open => opened

state opened

close => closed

end

machine doors

state closed

open => opened

lock => locked

state opened

close => closed

state locked

unlock => closed

end

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

9

10

11

Doors.sml (v1):

Doors.sml (v2):

d1

d2

d3

u1

u2

d4

d5

d6

d7

u3

u4

u5

u6 Textual model elements have no stable

identity across source versions

Objectives: Computing Deltas

• Question

– How to apply model

differencing to models

encoded as text?

• What are the differences?

– Imperative edit scripts encode

deltas

– Multiple deltas can express the

difference between two models

à ambiguity

– Deltas can capture

user intent

machine doors

state closed

open => opened

state opened

close => closed

end

d1

d2

d3

machine doors

state closed

open => opened

lock => locked

state opened

close => closed

state locked

unlock => closed

end

d4

d5

d6

d7

u1

u2

u3

u4

u5

u6

//create a State def with label d7

create State d7

//initialize the new State "locked"

d7 = State("locked",[Trans("unlock",d2)])

//store 2nd Trans in state "closed"

d2.out[1] = Trans("lock", d7)

//store new State

d1.states[2] = d7

Contributions

• Question

– How can textual differencing be used to match

model elements based on origin tracking?

• Contributions

– TMDiff

– Apply TMDiff to DSL programs

Objectives: Computing Deltas

• Origin

– srcn has an origin relation with mn

• Align

– Use the text diff Δ between src1

and src2 to align tokens of entities.

• Objective: Identify

– Given textual models src1 and

src2 determine which entities

in m1 are still in m2

src1

src2

Δ

m1

m2

identify

map

map

origin1

origin2

align

Approach: TMDiff

• TMDiff steps
– Matching: generate a tuple of

added, removed and identified entities

– Added: generate Create and SetTree operations

– Identified: difference nodes definitions

– Removed: generate Delete operations

str src1

str src2

obj m1

obj m2

list[Operation]TMDiff

machine doors

state closed

open => opened

state opened

close => closed

end

machine doors

state closed

open => opened

lock => locked

state opened

close => closed

state locked

unlock => closed

end

--- a/doors1.sl

+++ b/doors2.sl

@@ -3,0 +4

+ lock => locked

@@ -6,0 +8,3

+

+ state locked

+ unlock => closed

Matching Entities: Text diff

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

9

10

11

Matching Entities: Project, Identify

P1 =

[⟨doors, Machine, 1, d1⟩

⟨closed, State, 2, d2⟩,
⟨opened, State, 5, d3⟩]

P2 =

[⟨doors, Machine, 1, d4⟩

⟨closed, State, 2, d5⟩,

⟨opened, State, 6, d6⟩
⟨locked, State, 9, d7⟩] add

machine doors

state closed

open => opened

state opened

close => closed

end

machine doors

state closed

open => opened

lock => locked

state opened

close => closed

state locked

unlock => closed

end

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

9

10

11

d1

d2

d3

d4

d5

d6

d7

• Calculate Matching

– added, removed, identified entities

– M1,2 = ⟨{d7},{},{⟨d1,d4⟩,⟨d2,d5⟩,⟨d3,d6⟩}⟩

Differencing

• We now have

– Textual sources

– Models

– Origin relations

– Matching

• We now can

– Apply well-known model

differencing algorithms.

src1

src2

Δ

m1

m2

identify

map

map

origin1

origin2

align

Implementation & Evaluation

• Rascal
– Meta-programming language

and language work bench
http://www.rascal-mpl.org

– TMDiff
https://github.com/cwi-
swat/textual-model-diff

• Evaluated on Derric
– A DSL for digital forensics

– Describes file formats for
analyzing large amounts of
unstructured data.

– File format evolution is
available on GitHub.
https://github.com/jvdb/derric

format gif

extension gif

strings ascii

sign false

unit byte

size 1

type integer

endian big

Sequence

(Header87a Header89a)

LogicalScreenDesc

(

[GraphicControlExtension? TableBasedImage

CompressedDataBlock*]

[GraphicControlExtension?

PlainTextExtension DataBlock*]

[ApplicationExtension DataBlock*]

[CommentExtension DataBlock*]

)

http://www.rascal-mpl.org
https://github.com/cwi-swat/textual-model-diff
https://github.com/jvdb/derric

Towards Live Domain-Specific Languages
From Text Differencing to Adapting Models at Runtime

Journal of Software & Systems Modeling, 2017

Riemer van Rozen1,2,3 and Tijs van der Storm2,4

1 Amsterdam University of Applied Sciences (HvA)

2 Centrum Wiskunde & Informatica (CWI)

3 University of Amsterdam – Master SE (UvA)

4 University of Groningen (RUG)

@rvrozen @tvdstorm

Case Study: Live SML

• LiveSML Metamodels

a) Static metamodel

b) Dynamic metamodel

extension:

• Machine

current state

• State count

• Note: The run-time

meta-model of

LiveSML “extends” its

static meta-model,

which is not true in

general

Live SML: Components & Models

• Live SML components

a) programming

environment

b) program

execution as an

interactive GUI

• Live SML Models

c) static SML model

representing the

textual source

code

d) dynamic SML

model that is

executing at run

time

Live SML: State Migration

• Creation of a new machine

– Initially there is no

machine because we start

with an empty object

space.

– We store a reference to

the machine when it is first

created (lines 9 and 10).

• Creation of a new state

– The count attribute is

initialized to 0 (lines 12–

15).

Live SML – State Migration

• Insertion of an element in an

uninitialized machine.

– When a state or group is

inserted into a machine that

has no current state (lines

24–29), it is initialized to the

initial state (lines 43–54).

– The initial state is the first

state in the textual model.

• Deletion of the current state

– When a machine’s current

state is deleted (lines 36–

37), it is reinitialized to the

initial state (lines 43–54).

Live SML – State Migration

• Insertion of an element in an

uninitialized machine.

– When a state or group is

inserted into a machine that

has no current state (lines

24–29), it is initialized to the

initial state (lines 43–54).

– The initial state is the first

state in the textual model.

• Deletion of the current state

– When a machine’s current

state is deleted (lines 36–

37), it is reinitialized to the

initial state (lines 43–54).

Live State Machine Language in Rascal

Live SML: Modeling Scenario

• Interleaved coevolution of models Doorsn and

application run-time states Sn over time

• Next: TMDiff deltas + migration deltas

Live SML: Modeling Scenario

Model State Event Edit operation Origin

∅ s0 Save Doors1 δ1 create State d2 TMDiff ∅ Doors1

δ2 d2.count = 0 side effect

δ3 create State d3

δ4 d3.count = 0 side effect

δ5 create Mach d1

δ6 d2 = State(name("closed"),

[Trans("open",d3)])

δ7 d3 = State(name("opened"),

[Trans("close",d2)])

δ8 d1 = Mach(name("doors"),

[d2,d3])

δ9 d1.state = d2 side effect

δ10 d2.count = 1 side effect

At the end of this sequence we are in Model Doors1 and State s1.

Model State Event Edit operation Origin

Doors1 s1 Click open δ11 d1.state = d3 user action

δ12 d3.count = 1

Doors1 s2 Click close δ13 d1.state = d2 user action

δ14 d2.count = 2

Doors1 s3 Save Doors2 δ15 create State d7 TMDiff Doors1 Doors2

δ16 d7.count = 0 side effect

δ17 d7 = State(name("locked"),

[Trans("unlock",d2)])

δ18 insert d2.transitions[1] =

Trans("lock",d7)

δ19 insert d1.states[2] = d7

δ20 rekey d1 → d4

δ21 rekey d2 → d5

δ22 rekey d3 → d6

Doors2 s4 Click lock δ23 d4.state = d7 user action

δ24 d7.count = 1

Model State Event Edit operation Origin

Doors2 s5 Save Doors3 δ25 create Group d11 TMDiff Doors2 Doors3

δ26 d11 = Group("locking",[d6])

δ27 remove d4.states[2]

δ28 insert d4.states[2] = d0

δ29 rekey d4 → d8

δ30 rekey d5 → d9

δ31 rekey d6 → d10

δ32 rekey d7 → d12

Doors3 s6 Save Doors1 δ33 remove d8.states[2] TMDiff Doors3 Doors1

δ34 remove d9.transitions[1]

δ35 delete d11

δ36 delete d12

δ37 d13.state = d9 Side effect

δ38 d9.count = 3 Side effect

δ39 rekey d8 → d13

δ40 rekey d9 → d14

δ41 rekey d10 → d15

Discussion, Benefits and Limitations

Feature / benefit Trade-off / limitation Mitigating argument

Edit operations: record

history as edit scripts

for do, undo, replay

Large memory foot print,

a potential memory leak

Recording differences can

be turned off or limited

TMDiff is language-

parametric (needs

name resolution) and

calculates model-based

deltas “for free”

The results of the

differencing algorithm

bleed into the language

semantics (which

entities live and die)

Facilitates rapid Live

prototyping of DSLs for live

and textual modeling. The

default is usually OK due to

small incremental changes

RMPatch helps

construct DSL

interpreters for

live programming

High implementation

effort. The granularity of

edit scripts operations is

too fine (does not scale).

Some languages require

exact state migrations and

precise steering

Conclusions and Future Work

• Questions

1. How can textual differencing be

used to match model elements

based on origin tracking?

2. How can “Live DSL” construction

be supported with generic

reusable frameworks?

• Contributions

– TMDiff and RMPatch

– Apply TMDiff to DSL programs

– LiveSML illustrative example

• Current work

– Modeling extensible state

migrations that scale to larger DSLs

– Live Machinations

References

• Riemer van Rozen and Tijs van der Storm.

"Origin Tracking + Text Differencing =

Textual Model Differencing." International

Conference on Theory and Practice of Model

Transformations. Springer, 2015.

• Riemer van Rozen and Tijs van der Storm.

"Toward Live Domain-Specific Languages:

From Text Differencing to Adapting Models

at Runtime" Software & Systems

Modeling(2017): 1-18.

Modeling with Side-Effects
current work

in the context of the Live Game Design RAAK-MKB project

Riemer van Rozen1,2,3

1 Amsterdam University of Applied Sciences (HvA)

2 Centrum Wiskunde & Informatica (CWI)

3 University of Amsterdam – Master SE (UvA)

@rvrozen

Gameplay Engineer

Ernest Adams

Joris Dormans

auto source s
pool p at 7
flow: s -p-> p

=

Player

MM Lib

Machinations Evolution & Approach

Conceptual

Game Design

Aid

2009

Mechanics

Patterns

Mechanics

Pattern

Language

Mechanics

Design

Assistant

Formal Analysis

+ text, modules

2013

Live

Adaptations

v1.0 C++

2014

A Pattern Based

Game Design

Assistant

2015

Live

Adaptations

v2.0 C# Unity

2018

Design Decision

Alternatives

Machinations Evolution & Approach

• Joris Dormans. Machinations:

Elemental Feedback Patterns for

Game Design. In GAMEON-NA, 2009.

• Ernest Adams and Joris Dormans.

Game Mechanics: Advanced Game

Design. New Riders Publishing, 2012.

• Paul Klint and Riemer van Rozen.

Micro-Machinations: A DSL for Game

Economies. In Software Language

Engineering, 2013

• Riemer van Rozen and Joris Dormans.

Adapting Game Mechanics with

Micro-Machinations. In Foundations

of Digital Games, 2014.

• Riemer van Rozen. A Pattern-Based

Game Mechanics Design Assistant. In

Foundations of Digital Games, 2015.

• Riemer van Rozen and Tijs van der

Storm. Toward Live Domain-Specific

Languages. Software & Systems

Modeling, 2017.

Conceptual

Game Design

Aid

2009

Formal Analysis

+ text, modules

2013

Live

Adaptations

v1.0 C++

2014

A Pattern Based

Game Design

Assistant

2015

Live

Adaptations

v2.0 C# Unity

2018

Live Machinations: Model + State

Live Machinations: Model + State

