UNIVERSITY

) = Hogeschool van Amsterdam
z OF AMSTERDAM

Amsterdam University of Applied Sciences

X
X
X

\ CWL_

Measuring Quality of Grammars for
Procedural Level Generation

Procedural Content Generation Workshop
August 7th 2018, Malmo, Sweden

Riemer van Rozen'?3 Quinten Heijn3

1. Amsterdam University of Applied Sciences — Play & Civic Media
2. Centrum Wiskunde & Informatica — Software Analysis & Transformation
3. University of Amsterdam — Master of Software Engineering

Live Game Design

* Premise: Live Game Design project
— case study with Ludomotion

— quality assurance of procedurally
generated game levels

— Ludoscope

* Problem. grammar-based
procedural level generation raises
productivity of level designers at
the cost of quality assurance

Unexplored: a roguelike dungeon
crawl game that embeds a grammar-
based dungeon generator

Ludgmogi@n

Problem Statement

Problem. authoring, improving,
maintaining grammars is difficult
— lack of direct manipulation

— hard to predict how each grammar
rule impacts the overall level quality

Challenge. lack of tools and
techniques for debugging and testing

Question: How can the quality of
grammars that work on tile maps for
procedural level generation be
improved?

Objectives. Better tools & techniques

grammar
rules

level
designer

problematic level

levels

Software Evolution

e Software Evolution .
-

— software conforms less and less
to the changing expectations of
its users

Sof?ware EVOIVlng

Evolution Software

Systems

— it becomes harder to adjust the
software and maintain its quality

— games = changing requirements

e Two branches of research

1. What evolves. improve Software Evolution. Editors: Tom Mens
knowledge, plan and predict, and Serge Demeyer. Springer, 2008
e.g., by analyzing source code
over time

Evolving Software Systems. Editors: Tom
Mens, Alexander Serebrenik, Anthony
Cleve. Springer 2014

2. How to evolve. improve
techniques for adjusting
software to new requirements,
e.g., with model transformations

Approach and Contributions

 Level Designer questions

1.
2.

Efficiency. No dead content?

Effectiveness. Are the intended
parts in the level?

Root-cause analysis. Given a
level with a problem, by which
rules were the affected tiles
generated?

Bug-fixing. Does changing a rule
improve levels, or does it also
introduce new problems?

Bug-free. How to test?

 Approach: use SE techniques to
answer level designer questions

1. Metric of Added Detail (MAD)

Lines of Code (LOC): used to
measure volume (or size)

Cyclomatic Complexity (CC):
calculates branch points in
control flow

addresses question 1

2. Specification Analysis Reporting
(SAnR)

grammar rules perform model
transformations

apply origin tracking, record
transformations, analyze history

specify level properties
addresses questions 2, 3,4, 5

Dungeon Room Generator

Dungeon room generator

— toy example
— simple, representative

Goals
— Traverse the room
— Evade fire pillar traps
— Extinguish the flames

Level

shown
e e e = e e e ==

[" " " " " " " " "
i — i —— - -—
—— — i — i —— —— p——

Dungeon room pipeline — stage 1

e First, we add walls Module m1: add walls

X =off map [J=empty [=wall - E_) }X (R,U)

* Rulerl replaces empty cells
on the room borders by walls
— (R) includes rule rotations

— (U) repeats until the rule can
no longer be applied

* Running the module results
in an empty room with walls

Dungeon room pipeline — stage 2

Next, we add doors
[] =door

North door. Rule r2 replaces
a north wall (neighboring an
empty cell) by a door

East door. Rule r3 replaces
an east wall (neighboring an
empty cell) by a door

Running module m2 results
in two doors in the walls

Module m2: add doors

r2:

r3:

5-»
B B

(1x)

(1x)

Dungeon room pipeline — stage 3

Finally, we add a challenge Module m3: add traps
E =pillar [=water

r4.
Fire pillars set players on
fire when they remain close (5:
for too long

Water from a pond enables
players to extinguish the
flames

Running module m3 results
in a room populated with
three fire pillars and a pond

Dungeon room pipeline — complete

Module m1: add walls Module m2: add doors

r3:

r1: E»] RU) r2: !»
H B

(1x)

(1x)

Module m3: add traps

r4:

r5:

Successive model transformations

=off map
[] =door

[[1=empty [=wall

B =pillar

] =water

Dungeon room pipeline — problems

Problem: fire pillars can module 4a: remove obstacles
block access to doors 6: i - (R,U)
 Patch 1: remove obstacles

— Rule r6 removes fire pillars
blocking doors .

* Result: fewer traps than

intended may reduce the
difficulty

Dungeon room pipeline — problems

e Patch 2: move obstacles module 4b: move obstacles

— Rule r7 move a fire pillar r7. —> (R,U)
blocking a door to the left

— Rule r8 moves a fire pillar

blocking a door to the right r8: E —> E (R,U)

Rule r7 moved pillar M Cannot move pillar 2 Problems moving pillar 3

MAD Level Design

* Analyzing rule effect with the Level
Metric of Added Detail (MAD) Design <
— Design a rule and calculate the
MAD score with respect to a derive Detail
symbol hierarchy Rules - -> hierarchy
{m.-@>O0>Mm"> \, 74
e C(Calculating the metric MAD
— Neutral effect (0): cell remains Analysis
the same \/
— Add detail (+1): cell is rewritten to Rules +
a new symbol Metrics

— Remove detail (-1): cell is
rewritten to an old symbol

MAD Level Design

Symbol hierarchy {H,.H }> 0> MW >

module m4a: remove obstacles MAD score heatmap

r6: —— (RU) | -1 (+0-1)

Rule r6 has a negative MAD score, since it removes detail.

module m4b: move obstacles MAD score heatmap

17: — RU)| 0 (+1-1)

il -+
r8: E — E (RU)| 0 (+1-1)

1=

Rules r7 and r8 have a neutral MAD score, since they preserve detail.

Level Property Language

Problems with patching
— difficult to get right
— side-effects

grammar
rules vl

— do not express level properties
P prop level

designer levels
Solution: Level Property Language
domain-specific language for

expressing level properties

— declarative instead of grammar
transformative rules v2

— uses names of tiles

and grammar rules

— add new properties when needed levels

— lterative testing

Level Property Language

Amounts. counts locations of
specific tile types and verifies
expected amount
— 1x water. size {w} == 1: true
— 3x pillar. size {a,b,c} == 3: true

Adjacency. filters tile locations

— no pillar adjacent to doors
size {a} == 0: false

Topographical inclusion. filters
level generation history using rule
names to obtain tile locations

— 2x doors in walls. collects tiles affected
by the walls rule. size {x, y} == 2: true

1x water

3x pillar

no pillar adjacent to door
no water adjacent to pillar

2x door in walls

SANR Level Design

* Mixed-initiative level design

using Specification Analysis
Reporting (SAnR) Design

Select
a level
1. Design grammar rules and

level properties Level Level +
Generate levels Properties History

2.
3. Select a level to debug \ /
4. Analyze hoyv properties SANR
evolved in its level Generator :
Analysis

generation history l

Levels + Level +

Histories Report

Module Rule _
Properties

m1 addWalls

m2 addNorthDool 2x door in addWalls
m2 addEastDoor 1x water

m3 addWater 3x pillar

Ox pillar adjacent to
door

m3 addPillar
m3 addPillar
m3 addPillar

0x water adjacent to
pillar

A O A LWN - O

Number of executions: 1000
Start analysis

| Property Broken by Occurences
Executions: 1000 0x water adjacent to pillar addPillar 570 (57.000%)
Unique results: 988 0x pillar adjacent to door addPillar 318 (31.8000%)
Broken results: 727

1 version: ©.6f
2 m4

Executed as grammar

) start: TILEMAP 1 1 ©:undefined

3 rule: clearDoors(width=2, height=2,
gt=7) = TILEMAP 2 2 ©:wall 1l:door
2:floor 3:pillar > {© = TILEMAP 2 2

: |
@:wall 1:door 2:pillar 3:floor} clearDoors

D

o A< I

Save changes |

Number of executions: (1000
Start analysis
| Property Broken by Occurences
Executions: 1000 Ox water adjacent to pillar addPillar 554 (55.4000%)

Unique results: 988 Ox water adjacent to pillar clearDoors 22 (2.2000%)

Broken results: 585 0x pillar adjacent to dIoor addPillar 38 (3.8000%)
L, Execution #56

L, Execution #82

L Execution #95

L, Execution #102

L, Execution #158

L Execution #186

L, Execution #205

L, Execution #220

L, Execution #227

Conclusions

* Software Evolution perspective
- . grammar
— opportunities for tool improvements rules +
— Two novel techniques for level
grammar-based level generation, properties
specifically for tile maps Ie.vel
designer levels

1. Metric of Added Detail (MAD)

— raises flags for rules that remove
details (which may be problematic)

2. Specification Analysis Reporting (SAnR)
— adds declarative level properties

— provides insight into level generation
history

. Evaluation and validation

— Case study on Boulder Dash

